
ORIGINAL RESEARCH PAPER

A real-time streaming server in the RTLinux environment
using VideoLanClient

Alfredo Petrosino • Marco Miralto •

Alessio Ferone

Received: 1 July 2008 / Accepted: 7 October 2010 / Published online: 27 October 2010

� Springer-Verlag 2010

Abstract Accessing rich multimedia content through

terminals and bandwidth-constrained networks is an

important issue. Therefore, multimedia servers for deliv-

ering such data deserve much attention. A novel real-time

streaming system for multimedia is presented, based on

real-time operating systems. The VLC streaming server

has been improved by employing a modified version of

RTLinux that includes DMI and/or EDFI schedulers with

the aim to build a complete streaming system for multi-

media. Tests have been performed to measure one of the

most important aspects of such systems, that is, jittering.

The proposed system is able to achieve good performance

both in simulated and real-world situations.

Keywords Real time � Audio/Video Streaming �
Multimedia system � VLC � RTLinux �
Real time scheduling

1 Introduction

Modern multimedia systems are getting increasingly pop-

ular. Indeed, concepts like video and audio streaming [1, 2],

less popular years ago, are used daily by millions of people,

thanks to the explosion of broadband internet connections.

Multimedia systems must comply with two require-

ments [3]:

• management of a high data rates

• need of real-time playback.

The first requirement should be in accordance with

human sight capabilities, which can elaborate a great

amount of data per second. The second point has been

afforded during these past years by adding real-time

capabilities to operating systems (OSs) [4]. This mainly

involves that some parts of operating systems, such as the

file system and the CPU scheduler, were modified so to

lower the average response time of the OS to jobs sub-

mission [5]. For instance, we can imagine a simple scenario

where we need to broadcast a movie in PAL format over a

network requiring that the streaming server should be able

to make at least 25 submissions each second.

One of the most important problems involved in the data

streaming is known as jitter, which is formally defined by

the CCITT as ‘‘short-term variations of the significant

instants of a digital signal from their ideal positions in

time’’ [6].

This definition implies that timing jitter possesses

cumulative properties, so that without adequate control it

can grow to an amplitude sufficient to merge adjacent

submissions. For this reason, jitter has to be kept as low as

possible. A solution usually employed to solve the jittering

problem consists of using a cache on the client side to

buffer a certain amount of incoming data before starting the

playback. However, small systems like smart phones,

PDAs and, in general, all portable devices have small

amount of memory and hence the jitter problem can be

addressed only partially by buffering data.

Many approaches have been proposed to address the

problem of streaming multimedia contents in a real-time

environment. They usually are hardwired based on specific

compression algorithms [7] or specific hardware to exploit

A. Petrosino (&) � M. Miralto � A. Ferone

Department of Applied Science, University of Naples

‘‘Parthenope’’, Centro Direzionale Isola C4,

80143 Naples, Italy

e-mail: alfredo.petrosino@uniparthenope.it

A. Ferone

e-mail: alessio.ferone@uniparthenope.it

123

J Real-Time Image Proc (2011) 6:247–256

DOI 10.1007/s11554-010-0183-4



real-time performance [8]. Both approaches are clearly not

portable.

The aim of the present work is to build a portable

streaming system (Fig. 1) which can exploit real-time

capabilities of a real-time operating system, i.e. a system

able to supply multimedia contents through a network with

deterministic timing so to eliminate the source of jitter on

the server side, thus minimizing jittering. The system

should have the following features:

• Precision: the system has to send data using a socket

within rigid time constraints.

• Scalability: the system has to adapt to many users’

requests accepting new transmission streams.

• Reliability: when a new request is submitted, the

system has to verify if it can be accepted; i.e. if the set

of active tasks is not feasible adding the new one, the

request has to be rejected.

There are many proprietary architecture solutions to

achieve multimedia streaming, most of them using pro-

prietary protocols. In this work we present a solution for an

open source architecture, based on Video Lan Client (VLC)

open source software [9]. Inspite of the name, VLC is not

only a multiformat player that can manage playback for a

variety of free and non-free multimedia formats, but it is

also a multiprotocol streaming server that can handle RTP

(unicast and multicast on the UDP layer) and HTTP-

encapsulated streaming technology for Video-on-Demand.

It can also reproduce streaming, supporting, once again,

RTP, shoutcast and icecast protocols. The solution we

propose is based on real-time capabilities of operating

system. A variety of approaches to real-time have been

recently proposed and many others have recently appeared

too [10]. Montavista Linux, Windows CE and the recent

RT patchset by Ingo Molnar to the vanilla Linux Kernel are

some of recent approaches. All these operating systems

share a basic feature: they are all soft real-time systems.

What we need to gain our goal is a hard real-time envi-

ronment like that one offered by QNX, RTLinux and

RTAI. We need hard real-time to get both low latency over

job submission and a deterministic job scheduler able to

run a specific task at a given moment and, also, able to

complete its operations within a given time (deadline).

We choose to lean on RTLinux [11] for developing our

work, according to which every real-time task is realized as

a kernel module, named by us VLCKern module. Tasks can

be submitted by loading the modules into the kernel and

run them in kernel space, thus sharing the kernel address

space. There are no memory protection mechanisms

implemented and tasks use non-swappable memory (swap

in and out operations can be the cause of non-deterministic

delays during the execution of a task).

Many applications can benefit of such system, for

example, video surveillance, monitoring of protected areas,

sensor networks and in general all those application fields

where it is necessary to stream multimedia data through

communication channels.

The work is organized as follows: Sect. 2 describes the

proposed system and gives the details of the software

architecture design and implementation, including the

VLCKern module. Section 3 reports results in terms of

time performance and jittering. Concluding remarks and

further ongoing work are described in the last section.

2 Proposed system

To use a real-time operating system, a primary task is to

analyse which operations should be performed in the real-

time environment. The main idea is to keep out of the real-

time core all those operations whose computations could be

conditioned by non-deterministic events. In performing this

division between real-time tasks (in kernel-space) and non

real-time tasks (in user space) it is necessary to remember

that floating-point operations should be avoided. Based on

the VLC input/output chain depicted in Fig. 2, we can

identify the following steps:

1. reading multimedia source

2. demultiplexing/decoding and packetization

Fig. 1 The proposed system

Fig. 2 The VLC input/output chain

248 J Real-Time Image Proc (2011) 6:247–256

123



3. coding into the final format

4. sending through a socket or writing in a file.

Reading the source media is not a big deal because of the

device high transfer rate (such as ATA/SATA, USB2 or

FireWire devices) and filesystem performance and hence

real-time computation is not necessary. Steps 2 and 3 are the

most CPU-demanding activities done in VLC but they

depend on the file format to process and involve floating-

point operations and hence they are not performed in real-

time. Also, the decoding process relies on several audio/video

codecs which should be ported in kernel space. This opera-

tion would involve intensive re-design of algorithms imple-

mented into the codec libraries to be adapted to the real-time

environment in kernel space. Last but not least, this approach

would require a deep re-engineering of VLC architecture.

What really needs to be handled in real-time is the buffering

and sending of packets with hard real-time constraints.

We can summarize tasks in four points (Fig. 3):

1. VLC is merely a stream feed.

2. A real-time task gets data from VLC, saves them in a

buffer and sends them using a socket.

3. VLC runs in user-space while the real-time task runs in

kernel-space; hence, a communication method is

necessary.

4. Packet submission performed by VLC has to be

disabled so that the real-time task can handle it.

In the following sections, each part of the proposed

system is explained, with respect to the scheme of Fig. 4,

along with the interactions between them.

2.1 VLCKern module

VLCKern is a kernel module designed by us to guarantee

real-time streaming. It involves the following tasks:

• Wait for a streaming request from a client in user space.

• Parse request parameters.

• Create a real-time thread to stream data according to

the received parameters.

VLCKern module is developed following a hybrid

multithread model where two kinds of thread are used: non

real-time threads (kthread) scheduled by Linux kernel, and

real-time threads whose creation and scheduling is handled

by RTLinux kernel.

RTLinux works as a mini-kernel running side by side

with a patched standard Linux kernel. It supports all

hardware supported by the standard kernel. We used a free

version of RTLinux, community supported, in combination

with a 2.4.29 Linux kernel. RTLinux standard scheduler is

priority driven and supports periodic tasks. It supports

preemption, as higher priority tasks can preempt lower

priority ones. Priorities are fixed and are declared when the

job is submitted to the system. At time of task submission,

we must specify the task period too. The scheduler keeps a

queue of ready tasks, i.e. all the tasks whose period timer

has been fired. Among them, the one featuring higher

priority is selected for execution and can only be pre-

empted by an higher priority task that eventually is moved

to the ready queue. The scheduler is implemented in a

kernel module and, most significantly, new schedulers can

be built working on a simple source file, inserted at run-

time at our convenience.

For our work we used the deadline monotonic with

inheritance (DMI) [12] and earliest deadline first with

inheritance (EDFI) [13] schedulers. As the name suggests,

these schedulers are derived from the Deadline Monotonic

and the Earliest Deadline First [14] schedulers, respec-

tively. The difference between the two algorithms is that

DMI sorts tasks by their period, while EDFI sorts tasks by

their deadline. Both of them add deadline-inheritance

mechanisms to the parent schedulers. They were realized

by Marc Maurer [15] for RTLinux, based on [16]. The idea

behind these schedulers is to provide the developer with

tools to easily implement mutual exclusion of shared

resource in a real-time environment. The choice of one of

the above algorithms is strongly related to the application

and the nature of task to be performed. In general, EDFIFig. 3 The real-time VLC input/output chain

Fig. 4 Components of the proposed system

J Real-Time Image Proc (2011) 6:247–256 249

123



has proved to be more flexible though it needs more

computational resources.

Every job submitted to these two schedulers must bring

several information:

• period of the task

• deadline of the task

• expected CPU burst

• a string which specifies all used shared resource and the

estimated time for which the task will hold each of them.

Being a kernel module, the commands insmod or

modprobe can be used to initiate the execution of VLCKern

as for any other kernel module. Execution of one of these

commands cause a call to the module entry function

(init_module()) which performs the following operations:

• Creation of both control and receiving FIFOs

• Creation of a (not real-time) kernel thread using the

function kernel_thread()

Every FIFO has a preallocated memory made of 1,024

elements, each one of 1,328 bytes. The element dimension

has been chosen based on the MPEG-TS format and is

hardcoded because there are no methods to dynamically

allocate it at run time. Each FIFO acts like a buffer for data

produced by VLC in user-space and ready to be sent to clients.

2.1.1 Control thread

Control thread is a kernel thread, i.e. it is not a real-time

thread because of the task it is supposed to perform. It

periodically (every second) reads a specified FIFO (defined

by the costant CONTROLFIFO) in a non-blocking way.

This FIFO is used to submit requests, from user space, for

allocating new streaming (real-time) threads.

Task’s pseudo-code is reported below:

The control thread pre-allocates a rtl_thread_struct,

reads from control FIFO and saves data in a temporary

structure (n into the code). If the structure member magic

value is greater than 0, then the FIFO contains a new

streaming request and the other structure values are the

streaming parameters: period, deadline, estimated CPU

time, FIFO id where data will be sent, multicast group IP

address and port. These parameters are used to create a

real-time thread to handle the streaming, which indeed will

start its execution only if the EDFI or DMI admission

control procedure is passed. This procedure admits a new

task only if the scheduling remains feasible, i.e. only if the

scheduling of the new task is compatible with the sched-

uling of the task already admitted. Hence, the admission

control procedure is fundamental to guarantee that the

system will never miss a deadline.

2.1.2 Real-time streaming thread

The first step consists in setting up all the parameters

needed to perform data submission, like period, deadline

and estimated CPU time (used for the timing constraints)

and IP address, port and protocol (UDP) (used to effec-

tively access the net). At this moment the thread is ready to

begin the streaming task that can be summarized in six

steps:

1. call to the function pthread_wait_np() (put the thread

into the waiting queue)

2. allocate and clean the sending buffer

3. read multimedia data from a specified FIFO

4. create and initialize message to be sent

5. write data to the socket

6. deallocate send buffer

2.2 Real-time VLC

This section discusses the user space part of the proposed

system, that is our changes to VLC. Even though other

programs can be used to stream media, VLC has been

chosen because of its modularity and the well-documented

architecture. In particular, changes are made in the RTP/

UDP plugin that is the one responsible of the network

media access.

VLC standard interface for module developing requires

that an initial description of the module is provided. This

task is accomplished defining a certain amount of macros

which describe the parameters configurable by user. In our

implementation, a checkbox to activate real-time capabil-

ities has been added, that, when checked, allows the user to

choose other parameters such as the control FIFO number,

the sending data FIFO number and the period in ms. These

parameters are used for initiating the module, and in

250 J Real-Time Image Proc (2011) 6:247–256

123



particular, if the previous checkbox is checked, for dis-

abling standard sending procedure and enabling the real-

time one. Specifically, using real-time extension in UDP

module forces VLC to not create socket and timers, and to

use instead a FIFO that will send packets to the real-time

module.

3 Experimental results

In this section, we will show results obtained employing

the proposed system. A first part of the test has been per-

formed on VLCKern module in order to verify its perfor-

mance separately from the rest of the system. The second

part of the test has been carried out over the entire system

to show its performance in a real-world situation. The

hardware configuration adopted during development and

testing phases is as follows:

• Desktop

– CPU Intel Celeron D 2.5 Ghz

– 512 MB RAM DDR

– HDD ATA 7200 RPM

– network interface Marvell/Yukon 10/100/1000

• Laptop

– CPU Intel Mobile Celeron 1.8 Ghz

– 256 MB RAM SDRAM

– HDD ATA 5400 RPM

– network interface Intel Pro VE 10/100

The software configuration adopted is as follows:

• Kernel Linux 2.4.29

• RTLinux version 3.2r1 patch for kernel 2.4.29

• DMI/EDFI patch for RTLinux (modified to work with

RTLinux 3.2rc1)

• Debian GNU/Linux 3.1 (Sarge)

3.1 VLCKern: jittering

As stated before, using a real-time OS is meant to keep

jittering as low as possible by adopting RT-FIFOs like send

buffers.

For this reason, many tests have been performed to

measure the jittering of the proposed architecture. A typical

test would read audio/video data from a source and send it

to clients using VLCKern. On the client side measures have

been taken using tcpdump. Although a dedicated network

has been created for testing, neither TCP and UDP are real-

time protocols, hence nothing can be said about packet

loss, receiving time or delay, due to many issues that can

cause them in a network.

3.2 Test 1

The aim of this test is to verify the jittering values in a

simple scenario. The parameters used for the testing sce-

nario 1 are

• scheduler: EDFI

• 1 video streaming

• period: 15 ms

The first test has been performed using a single stream,

so EDFI scheduler has to handle just a single task with a

period of 15 ms. Figure 5 shows the mean values of the

same test repeated 1,000 times. As can be seen in Fig. 5,

except for some outliers, all packets arrive to clients with

very low jitter values. On a total number of 1000 packet

submissions, a 0.2% shows a low jitter, while a 0.1% shows

a higher jitter.

3.3 Test 2

The parameters used for the testing scenario 2 are

• scheduler: EDFI

• 15 videos streaming

• period: 15 ms

The second test is performed by transmitting 15 video

files at the same time, each one usable by a different IP

address. Figure 6 shows the mean jitter measurement rel-

atives to the 15 files. It can be observed that in this test,

packet arrival is in the interval ±2 ms, that leads to a

higher jitter measure although very stable. Causes of this

behaviour can be found by considering:

• the number of tasks that share the critical section used

to obtain an exclusive access to the network media

• the network delays, i.e. both the clients employed in

this test had requested all the 15 videos

Fig. 5 The EDFI jittering, single task

J Real-Time Image Proc (2011) 6:247–256 251

123



3.4 Real-time VLC: jittering

Final tests have been performed on the entire designed

software, i.e. the modified version of VLC and VLCKern,

to measure jitter values with real data. Multimedia contents

used are

• mp3 file

• DIVX video with mp3 audio

• DIVX video without audio

• XVID video with a52 audio

Both VLC with EDFI and DMI (i.e. with real-time

capabilities) have been tested and compared with the

unmodified version of VLC. The first test concerns the

streaming of a mp3 file. Period is set to 30 ms after

observing that the standard VLC performs a send every

55 ms. As shown in Figs. 7 and 8, both schedulers

accomplish the task with very few non-deterministic packet

delay. Standard VLC, on the contrary, shows a worst

behaviour; it is possible to note (Fig. 9) how variable is the

packets timing, which leads to higher jittering. Figure 10

shows performances of the unmodified VLC with a single

audio stream active; the chart shows that, also for a single

stream, packets’ timings are much higher than timings

obtained with the real-time capabilities enabled. This first

set of tests allow us to assert a first result: VLC with hard

real-time timings minimizes jittering, in particular when

dealing with multiple streams.

Results are much different when dealing with a audio/

video stream, like that one adopted in the second test. In

such a situation, hard real-time system performs much

better (Figs. 11, 12), either with a single stream and mul-

tiple streams, if compared with the standard version of VLC

(Figs. 13, 14). As can be observed, very few packets arrive

with an higher timing, so contributing to a very low jitter-

ing. Standard VLC instead presents a high variability of

packets due to the lack of precise timing in submissions.

Fig. 6 EDFI jittering, 15 tasks 2/15 Fig. 7 Test jittering EDFI only audio (mp3 file)

Fig. 8 Test jittering DMI only audio (mp3 file)

Fig. 9 VLC standard audio multiple streams (mp3 file)

252 J Real-Time Image Proc (2011) 6:247–256

123



Similar results are obtained with the same video file without

audio (Figs. 15, 16, 17, 18) although EDFI performs much

better than DMI, showing a lower timing in packet arrival.

The aim of the last test, performed on transcoded audio/

video file, is to measure how much the coding process

would drop down overall performance. Also in this situa-

tion, VLC with real-time capabilities enabled works well,

though some outliers can be observed in the chart (Figs. 19,

20). As expected, performance of the standard VLC gets

worst as can be seen from the variability in packets timing

(Figs. 21, 22). We remark that the coding process is not

performed exploiting the real-time capabilities of the sys-

tem, as stated above. It is clear that the lack of data to stream

in the FIFOs is the main cause of the timing variability.

4 Conclusions

The paper proposes a novel real-time streaming system for

multimedia. When dealing with portable devices various

Fig. 10 VLC standard audio single stream (mp3 file)

Fig. 11 Jittering audio/video with EDFI

Fig. 12 Jittering audio/video with DMI

Fig. 13 Standard VLC audio/video multiple steams

Fig. 14 Standard VLC audio/video single steam

J Real-Time Image Proc (2011) 6:247–256 253

123



constrains have to be taken into account, like slow CPU

and small amount of memory. These constraints motivated

the employment of RTLinux, a hard real-time operating

system, to ensure deterministic behaviour of performed

tasks. Tests have demonstrated that the proposed archi-

tecture is able to reduce jittering in a network environment

Fig. 15 Jittering video with EDFI

Fig. 16 Jittering video with DMI

Fig. 17 Standard VLC video multiple steams

Fig. 18 Standard VLC video single steam

Fig. 19 Jittering transcoded audio/video with EDFI

Fig. 20 Jittering transcoded audio/video with DMI

254 J Real-Time Image Proc (2011) 6:247–256

123



dedicated to media streaming, due to the use of special

real-time schedulers: EDFI and DMI. Both schedulers

embed mutual exclusion policies, which is a very impor-

tant feature when dealing with resource allocation in a

real-time environment. Results obtained are so encourag-

ing that future improvements could reside on the imple-

mentation of the proposed architecture on small systems

like smart phones or PDAs. The implementation on such

devices will be greatly useful in application fields where

most of the computation has to be moved to mobile

devices. Examples of such applications are peer-to-peer

audio/video communications by means of mobile devices,

video surveillance of protected areas where it is not pos-

sible to install cameras or other type of sensors, or sensor

networks where, due to the reduced capabilities of each

node, real-time capabilities have to be exploited to stream

data over the network.

References

1. Zeng, W., Nahrstedt, K., Chou, P., Ortega, A., Frossard, P., Yu,

H.: Special issue on streaming media. IEEE Trans. Multimedia 6,

268–277 (2004)

2. Civanlar, M., Luthra, A., Wenger, S., Zhu, W.: Special issue on

streaming video. IEEE Trans. Circuits Syst. Video Technol. 11,

282–300 (2001)

3. Dan, A., Sitaram, D.: Multimedia Servers. Morgan Kaufaman

(2000)

4. Mercer, C.W., Savage, S., Tokuda, H.: Processor capacity

reserves: operating system support for multimedia applications.

In: International Conference on Multimedia Computing and

Systems, pp. 90–99 (1994)

5. Bai, L.S., Lekatsas, H., Dick, R.P.: Adaptive filesystem com-

pression for embedded systems, design, automation and test in

Europe, 2008. DATE ’08, pp. 1374–1377 (2008)

6. CCITT: Recommendation G702, Red Book, 1984, Definition

no.2013

7. Eichhorn, M., Schmid, M., Steinbach, E.: A realtime streaming

architecture for in-car multimedia: design guidelines and proto-

typical implementation, ICVES 2008. pp. 157–162 (2008)

8. Mori T., Kaneko T., Moriya T., Ikeda K.: A real-time IMT-2000

audio transmission system. IEEE Trans. Consum. Electr. 47(4),

860–866 (2001)

9. Ecole Centrale Paris: VLC developers documentation. Ecole

Centrale Paris Ed. (2004)

10. Yang, D., Wang, H., Zhao, Y., Gao, Y.: A real-time streaming

media file sharing mechanism based on P2P and SIP. In: 1st

International Symposium on Pervasive Computing and Applica-

tions, pp. 731–736 (2006)

11. Yodaiken, V.: The RTLinux Manifesto. New Mexico Institute of

Technology (1999)

12. Jansen, P.G.: Deadline Monotonic with Inheritance. University of

Twente (2003)

13. Jansen, P.G., Mullander, S.J., Havinga, P.J.M., Scholten, H.:

Light-weight EDF scheduling with deadline inheritance. Uni-

versity of Twente (2003)

14. Liu C.L., Layland J.W. Scheduling algorithms for multi-pro-

gramming in a hard-real-time environment. J. ACM 20(1), 46–61

(1973)

15. Maurer, J.M.: Building on the DMI and EDFI Foundations.

Master Thesis, University of Twente (2005)

16. Jansen, P.G.: A Generalized Scheduling Theory Based on Real-

Time Transaction. Master Thesis, University of Twente (2001)

Author Biographies

Alfredo Petrosino received the Laurea degree (cum laude) in

Computer Science from the University of Salerno, in 1989, supervisor

E. R. Caianiello. During 1989–1994 he was a fellow researcher of the

Italian National Research Council (CNR). In 1995 he was a contract

researcher at International Institute of Advanced Scientific Studies

(IIASS). He held positions as Researcher of the National Institute for

the Physics of Matter (INFM) (1996–2000), as Researcher at the

National Research Council (CNR) (2000–2002) and as Senior

Researcher at CNR from 2002. He is actually Associate Professor

of Computer Science at the Univeristy of Naples ‘‘Parthenope’’. He

tought at the Universities of Salerno (1991–2006), Siena (1997/1998),

Naples ‘‘Federico II’’ (1999–2006), Naples ‘‘Parthenope’’

(2001–2010). He is author of more than 80 refereed papers and is

associate editor of Pattern Recognition, editor of Image and Vision

Computing, International Journal of Approximate Reasoning, Fuzzy

Fig. 21 Standard VLC transcoded audio/video multiple steams

Fig. 22 Standard VLC transcoded audio/video single steam

J Real-Time Image Proc (2011) 6:247–256 255

123



Sets and Systems. He is Senior member of the IEEE, IEEE

Computational Intelligence Society, International Association for

Pattern Recognition (IAPR) and Italian Neural Network Society. His

research interests include image analysis and pattern recocognition

with applications to target detection, remote sensing, biomedical

imaging, digital movie restoration, uncertain information processing.

Marco Miralto received the Master degree cum laude in Computer

Science from the University of Naples ‘‘Federico II’’. His research

interests include operating systems, real-time processing and multi-

media systems.

Alessio Ferone received the Master degree cum laude in Computer

Science from the University of Naples ‘‘Parthenope’’ and is currently

Assistant Professor in Computer Science. He is member of the IEEE

and International Association for Pattern Recognition. His research

interests include image processing, pattern recognition, real-time

processing, and multimedia systems.

256 J Real-Time Image Proc (2011) 6:247–256

123


	A real-time streaming server in the RTLinux environment using VideoLanClient
	Abstract
	Introduction
	Proposed system
	VLCKern module
	Control thread
	Real-time streaming thread

	Real-time VLC

	Experimental results
	VLCKern: jittering
	Test 1
	Test 2
	Real-time VLC: jittering

	Conclusions
	References


